Copied to
clipboard

G = C4226D14order 448 = 26·7

26th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4226D14, C14.762+ 1+4, (C4×D7)⋊5D4, C41D45D7, C4.34(D4×D7), (C2×D4)⋊12D14, C28.65(C2×D4), C28⋊D426C2, (C4×C28)⋊26C22, D14.47(C2×D4), C23⋊D1426C2, D14⋊C434C22, C4.D2825C2, (D4×C14)⋊32C22, C42⋊D723C2, Dic7.52(C2×D4), C14.93(C22×D4), Dic7⋊D436C2, C28.17D426C2, (C2×C28).635C23, (C2×C14).259C24, Dic7⋊C471C22, C75(C22.29C24), (C4×Dic7)⋊39C22, C23.D736C22, C2.80(D46D14), C23.65(C22×D7), (C2×Dic14)⋊34C22, (C2×D28).170C22, (C22×C14).73C23, (C23×D7).72C22, C22.280(C23×D7), (C2×Dic7).134C23, (C22×Dic7)⋊29C22, (C22×D7).227C23, (C2×D4×D7)⋊19C2, C2.66(C2×D4×D7), (C7×C41D4)⋊6C2, (C2×D42D7)⋊20C2, (C2×C7⋊D4)⋊26C22, (C2×C4×D7).138C22, (C2×C4).213(C22×D7), SmallGroup(448,1168)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4226D14
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — C4226D14
C7C2×C14 — C4226D14
C1C22C41D4

Generators and relations for C4226D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=b-1, dbd=a2b-1, dcd=c-1 >

Subgroups: 1900 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C14, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C41D4, C41D4, C22×D4, C2×C4○D4, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×D7, C22×C14, C22.29C24, C4×Dic7, Dic7⋊C4, D14⋊C4, C23.D7, C4×C28, C2×Dic14, C2×C4×D7, C2×D28, D4×D7, D42D7, C22×Dic7, C2×C7⋊D4, D4×C14, D4×C14, C23×D7, C42⋊D7, C4.D28, C28.17D4, C23⋊D14, Dic7⋊D4, C28⋊D4, C7×C41D4, C2×D4×D7, C2×D42D7, C4226D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, 2+ 1+4, C22×D7, C22.29C24, D4×D7, C23×D7, C2×D4×D7, D46D14, C4226D14

Smallest permutation representation of C4226D14
On 112 points
Generators in S112
(1 62 19 69)(2 70 20 63)(3 64 21 57)(4 58 15 65)(5 66 16 59)(6 60 17 67)(7 68 18 61)(8 95 28 88)(9 89 22 96)(10 97 23 90)(11 91 24 98)(12 85 25 92)(13 93 26 86)(14 87 27 94)(29 79 45 110)(30 111 46 80)(31 81 47 112)(32 99 48 82)(33 83 49 100)(34 101 50 84)(35 71 51 102)(36 103 52 72)(37 73 53 104)(38 105 54 74)(39 75 55 106)(40 107 56 76)(41 77 43 108)(42 109 44 78)
(1 34 12 41)(2 42 13 35)(3 36 14 29)(4 30 8 37)(5 38 9 31)(6 32 10 39)(7 40 11 33)(15 46 28 53)(16 54 22 47)(17 48 23 55)(18 56 24 49)(19 50 25 43)(20 44 26 51)(21 52 27 45)(57 72 94 110)(58 111 95 73)(59 74 96 112)(60 99 97 75)(61 76 98 100)(62 101 85 77)(63 78 86 102)(64 103 87 79)(65 80 88 104)(66 105 89 81)(67 82 90 106)(68 107 91 83)(69 84 92 108)(70 109 93 71)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 11)(2 10)(3 9)(4 8)(5 14)(6 13)(7 12)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(29 47)(30 46)(31 45)(32 44)(33 43)(34 56)(35 55)(36 54)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(57 89)(58 88)(59 87)(60 86)(61 85)(62 98)(63 97)(64 96)(65 95)(66 94)(67 93)(68 92)(69 91)(70 90)(71 75)(72 74)(76 84)(77 83)(78 82)(79 81)(99 109)(100 108)(101 107)(102 106)(103 105)(110 112)

G:=sub<Sym(112)| (1,62,19,69)(2,70,20,63)(3,64,21,57)(4,58,15,65)(5,66,16,59)(6,60,17,67)(7,68,18,61)(8,95,28,88)(9,89,22,96)(10,97,23,90)(11,91,24,98)(12,85,25,92)(13,93,26,86)(14,87,27,94)(29,79,45,110)(30,111,46,80)(31,81,47,112)(32,99,48,82)(33,83,49,100)(34,101,50,84)(35,71,51,102)(36,103,52,72)(37,73,53,104)(38,105,54,74)(39,75,55,106)(40,107,56,76)(41,77,43,108)(42,109,44,78), (1,34,12,41)(2,42,13,35)(3,36,14,29)(4,30,8,37)(5,38,9,31)(6,32,10,39)(7,40,11,33)(15,46,28,53)(16,54,22,47)(17,48,23,55)(18,56,24,49)(19,50,25,43)(20,44,26,51)(21,52,27,45)(57,72,94,110)(58,111,95,73)(59,74,96,112)(60,99,97,75)(61,76,98,100)(62,101,85,77)(63,78,86,102)(64,103,87,79)(65,80,88,104)(66,105,89,81)(67,82,90,106)(68,107,91,83)(69,84,92,108)(70,109,93,71), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,47)(30,46)(31,45)(32,44)(33,43)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(57,89)(58,88)(59,87)(60,86)(61,85)(62,98)(63,97)(64,96)(65,95)(66,94)(67,93)(68,92)(69,91)(70,90)(71,75)(72,74)(76,84)(77,83)(78,82)(79,81)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112)>;

G:=Group( (1,62,19,69)(2,70,20,63)(3,64,21,57)(4,58,15,65)(5,66,16,59)(6,60,17,67)(7,68,18,61)(8,95,28,88)(9,89,22,96)(10,97,23,90)(11,91,24,98)(12,85,25,92)(13,93,26,86)(14,87,27,94)(29,79,45,110)(30,111,46,80)(31,81,47,112)(32,99,48,82)(33,83,49,100)(34,101,50,84)(35,71,51,102)(36,103,52,72)(37,73,53,104)(38,105,54,74)(39,75,55,106)(40,107,56,76)(41,77,43,108)(42,109,44,78), (1,34,12,41)(2,42,13,35)(3,36,14,29)(4,30,8,37)(5,38,9,31)(6,32,10,39)(7,40,11,33)(15,46,28,53)(16,54,22,47)(17,48,23,55)(18,56,24,49)(19,50,25,43)(20,44,26,51)(21,52,27,45)(57,72,94,110)(58,111,95,73)(59,74,96,112)(60,99,97,75)(61,76,98,100)(62,101,85,77)(63,78,86,102)(64,103,87,79)(65,80,88,104)(66,105,89,81)(67,82,90,106)(68,107,91,83)(69,84,92,108)(70,109,93,71), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,47)(30,46)(31,45)(32,44)(33,43)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(57,89)(58,88)(59,87)(60,86)(61,85)(62,98)(63,97)(64,96)(65,95)(66,94)(67,93)(68,92)(69,91)(70,90)(71,75)(72,74)(76,84)(77,83)(78,82)(79,81)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112) );

G=PermutationGroup([[(1,62,19,69),(2,70,20,63),(3,64,21,57),(4,58,15,65),(5,66,16,59),(6,60,17,67),(7,68,18,61),(8,95,28,88),(9,89,22,96),(10,97,23,90),(11,91,24,98),(12,85,25,92),(13,93,26,86),(14,87,27,94),(29,79,45,110),(30,111,46,80),(31,81,47,112),(32,99,48,82),(33,83,49,100),(34,101,50,84),(35,71,51,102),(36,103,52,72),(37,73,53,104),(38,105,54,74),(39,75,55,106),(40,107,56,76),(41,77,43,108),(42,109,44,78)], [(1,34,12,41),(2,42,13,35),(3,36,14,29),(4,30,8,37),(5,38,9,31),(6,32,10,39),(7,40,11,33),(15,46,28,53),(16,54,22,47),(17,48,23,55),(18,56,24,49),(19,50,25,43),(20,44,26,51),(21,52,27,45),(57,72,94,110),(58,111,95,73),(59,74,96,112),(60,99,97,75),(61,76,98,100),(62,101,85,77),(63,78,86,102),(64,103,87,79),(65,80,88,104),(66,105,89,81),(67,82,90,106),(68,107,91,83),(69,84,92,108),(70,109,93,71)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,11),(2,10),(3,9),(4,8),(5,14),(6,13),(7,12),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(29,47),(30,46),(31,45),(32,44),(33,43),(34,56),(35,55),(36,54),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(57,89),(58,88),(59,87),(60,86),(61,85),(62,98),(63,97),(64,96),(65,95),(66,94),(67,93),(68,92),(69,91),(70,90),(71,75),(72,74),(76,84),(77,83),(78,82),(79,81),(99,109),(100,108),(101,107),(102,106),(103,105),(110,112)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14U28A···28R
order122222222222444444444477714···1414···1428···28
size111144441414282822441414282828282222···28···84···4

64 irreducible representations

dim11111111112222444
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D7D14D142+ 1+4D4×D7D46D14
kernelC4226D14C42⋊D7C4.D28C28.17D4C23⋊D14Dic7⋊D4C28⋊D4C7×C41D4C2×D4×D7C2×D42D7C4×D7C41D4C42C2×D4C14C4C2
# reps1111441111433182612

Matrix representation of C4226D14 in GL6(𝔽29)

2800000
0280000
0000112
00002718
00182700
0021100
,
120000
28280000
000010
000001
0028000
0002800
,
100000
28280000
00252500
0041100
000044
00002518
,
100000
28280000
004400
00182500
000044
00001825

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,18,2,0,0,0,0,27,11,0,0,11,27,0,0,0,0,2,18,0,0],[1,28,0,0,0,0,2,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,1,0,0,0,0,0,0,1,0,0],[1,28,0,0,0,0,0,28,0,0,0,0,0,0,25,4,0,0,0,0,25,11,0,0,0,0,0,0,4,25,0,0,0,0,4,18],[1,28,0,0,0,0,0,28,0,0,0,0,0,0,4,18,0,0,0,0,4,25,0,0,0,0,0,0,4,18,0,0,0,0,4,25] >;

C4226D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{26}D_{14}
% in TeX

G:=Group("C4^2:26D14");
// GroupNames label

G:=SmallGroup(448,1168);
// by ID

G=gap.SmallGroup(448,1168);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,675,570,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=b^-1,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽